Так что же разогрело Вселенную?

Опубликовано: 14.02.2018

Хотя одним инфляционным полем не объяснить эпохальное событие, без которого не возникли бы ни звёзды, ни окружающие их планеты, ни населяющие одну из них люди, во взаимодействии с ещё одним фактором разогрев Вселенной в период после инфляционного расширения всё же может стать более понятным.

В первые доли секунды после Большого взрыва Вселенная испытала сильнейшее экспоненциальное расширение — и в итоге имеет диаметр порядка 93 млрд световых лет при истории длиной всего в 13 млрд лет. Этот процесс, называемый инфляцией, должен был оставить космос довольно охлаждённым, ведь плотность распределения материи в нём упала в немыслимое количество раз.

А вот уже через 10−35 с после Большого взрыва фотоны носились посреди среды, нагретой до десятка миллиардов кельвинов. О том, как это получилось, теория инфляции прямо не говорит. В 1980-х теоретики выдвигали предположения, что скалярное инфлятонное поле (квантом которого [инфлятоном] может быть небезызвестный бозон Хиггса), собственно и составляющее инфляцию, после почти мгновенного раздувания Вселенной начало распадаться на фотоны, постепенно разогрев Вселенную и породив ситуацию, когда на место холодной пустоты пришла сравнительно горячая среда. Однако все применённые тогда модели показали, что этот процесс просто не мог быть достаточно быстрым, чтобы создать всю ту материю, что мы видим сегодня.

Джон Гиблин (John Giblin) из Колледжа Кеньона (США) вместе с коллегами рассмотрел возможность несколько иного сценария, который вполне может привести к картине, наблюдаемой во Вселенной нынче. Исследователи предположили, что инфлятонное поле справилось с разогревом Вселенной и образованием наблюдаемой материи не в одиночку, а в резонансном взаимодействии с каким-то вторым полем — или уже известным, или некоей новинкой (в теоретическом смысле), ещё не рассмотренной современной физикой.

При таком резонансном взаимодействии полей силы накладывающихся колебаний обоих могло хватить для сверхбыстрого распада бозонов Хиггса или других инфлятонов и образования массы частиц, с последующим нагревом Вселенной. Чтобы проверить это предположение, учёные провели моделирование, в котором с гипотетическим инфлятонным полем взаимодействовало хорошо известное поле электромагнитное, что после неизбежного резонанса вело к прямому образованию фотонов.

Моделирование также показало, что, ограничиваясь лишь этим механизмом резонанса, инфлятонное поле могло конвертировать 96% своей энергии в фотоны за относительно небольшое время. Казалось бы, речь идёт о временах, почти на 14 млрд лет предшествовавших делам очаковским и покоренью Крыма, что делает все эти построения сравнительно малодоступными для подтверждения.

Между тем модель вполне проверяема из нынешней эпохи: если фотоны и впрямь получили энергию от инфлятонного поля во взаимодействии с полем электромагнитным, это должно оставить следы в первоначальных линиях магнитного поля, пронизывавшего космос сразу после вышеописанных событий, и в принципе подлежащие выявлению даже сегодня. С другой стороны, если последующие наблюдения таких следов не выявят, это будет означать не то, что инфлятонное поле не взаимодействовало с каким-то другим полем вообще, но лишь отсутствие взаимодействия именно с электромагнитным полем.